VAE GAN

Dec. 8, 2019, 11:09 a.m.

I had been trying to train a version of VAE-GAN for a few weeks and it wasn't working as well as I had hoped it would. I had added an auxiliary output to the discriminator which was attempting to predict the 40 features of each image provided with the celeb-a dataset as suggested in the VAE-GAN paper and I was scaling that loss to try to bring it in line with the GAN discriminator loss, but I was doing that incorrectly so that loss ended up overwhelming the GAN loss. (I was summing, rather than averaging the losses, and the lambda I was using to scale the loss was appropriate for a mean loss, but with 40 features the auxiliary loss was 40x the GAN loss at base, so I needed to divide the lambda by 40 to get the effect I wanted.)

After having corrected that error I am finally making some progress with these models. Below are sample images from two models I am training. The first outputs images at 160x160, the second at 128x128.

I guess the moral of this story is if something isn't working the way you expect it to, double check your math before you continue training it!

Labels: python , machine_learning , pytorch , gan

3 comments

Eigenvectors from Eigenvalues

Nov. 24, 2019, 12:07 p.m.

This paper was released over the summer which describes a newly discovered method for obtaining eigenvectors from eigenvalues. While this method only works for Hermitian matrices, previous methods for computing eigenvectors were far more complicated and costly. While relatively, easy, it can be quite costly to determine the dominant eigenvector of a matrix, and this process had to be repeated after removing the dominant eigenvector of the matrix in order to compute additional eigenvectors.

This new method shows that there is a straightforward relationship between the normed squared eigenvalues of a matrix, the eigenvalues of submatrices, and the eigenvectors. I can't stress enough how amazing this is. This will require that all linear algebra textbooks be revised.

I have a numpy implementation of this new method available here.

Labels: python , linear_algebra

1 comment

Auto-Encoders

June 18, 2019, 9:02 a.m.

In one of my classes last semester we had to make a variational auto-encoder for the MNIST dataset. MNIST is a pretty simple and small dataset so that wasn't very difficult. Looking for something more challenging I decided to try to make a face autoencoder.

The first challenge was finding a suitable dataset. There are several public datasets, but they are inconsistent in terms of image size, shape and other important details. I ended up using several datasets - the celebA was the easiest one to use without having to do much work on it. But it is relatively small, consisting of only 200,000 images. I ended up using the ETHZ dataset from Wikipedia and IMDB, which are quite large but the images are all different shapes and sizes. So I had to do some pre-processing of the data to remove unusable images. I removed any images small than the input size I was using of 162x190, and I also removed any images that were wider than they were higher or bigger than 500x500. This dataset also contains some images which have been stretched out at the edges to bizarre proportions. I removed these by deleting any images where the 10th row or column was identical to the first row or column. Finally I resized the large images down to a more reasonable size. This resulted in a dataset of about 390,000 faces, all of which were roughly the right size and shape.

I decided to train my autoencoder as a normal autoencoder rather than a variational one, mostly due to the extra overhead required for the variational layers. I used a latent space of size 4096, and after training for 12 hours a day for a few weeks on Google CoLab the results were surprisingly accurate. Once the model seemed to start overfitting the training data I stopped training it so I could play around with it.

I wanted to try to do interpolation between faces, which was when I realized what the advantage of making the auto-encoder variational was. When I tried to interpolate between faces, because the latent space was not continuous, rather than working as one would expect it was more like adding the faces together. Training the autoencoders as variational forces the latent space to be continuous which makes interpolation possible, so I am currently trying to retrain the model as variational.

Since the non-variational autoencoder had started to overfit the training data I wanted to try to find other ways to improve the quality, so I added an discriminative network which I am also currently training as a GAN, using the autoencoder as the generator. I will update with results of that when I have results worth reporting.

The notebooks used are available on GitHub, and the datasets I used are on Google Cloud Storage, although due to their size and the cost of downloading them they are not publicly available.

Labels: python , pytorch , autoencoders

3 comments

Variable Scoping in Python

May 16, 2019, 1:56 p.m.

There is one thing that absolutely drives me crazy in Python and that is the fact that you can access a variable that was defined outside of a function from within the function without passing it as an argument. I'm not going to lie, that does come in handy at times - especially when you are working with APIs; but it is still a terrible way to do things.

I like the way scoping is done in C++ - each variable is only valid within the block in which it is declared, but obviously that doesn't work in Python since we don't declare variables. Even so, I think that the only variables that should be available in a function are the ones which are created in it or passed to it as arguments. While we can't modify variables that were declared outside of a function in Python, only access them, if the variable is an object you can modify it using it's methods. So if we have a list and we append to it in a function using list.append() it will actually modify the list, which is crazy.

Being able to access variables that were declared outside of the function makes it easy to write bugs and makes it hard to find them. There have been several times when I have declared a variable outside of a function and then I pass it in to the function with a different name and then use the external variable instead of the one passed into the function. The code will work, but not as expected, and it is difficult to track things like this down.

This makes me see much of the merit in functional programming languages like Scala.

Labels: coding , python

No comments

PyTorch Update

April 18, 2019, 7:26 a.m.

After another couple of weeks using PyTorch my initial enthusiasm has somewhat faded. I still like it a lot, but I have encountered many disadvantages. For one I can now see the advantage of TensorFlows static graphs - it makes the API easier to use. Since the graph is completely defined and then compiled you can just tell each layer how many units it should have and it will infer the number of inputs from whatever it's input is. In PyTorch you need to manually specify the inputs and outputs, which isn't a big deal, but makes it more difficult to tune networks since to change the number of units in a layer you need to change the inputs to the next layer, the batch normalization, etc. whereas with TensorFlow you can just change one number and everything is magically adjusted.

I also think that the TensorFlow API is better than PyTorch. There are some things which are very easy to do in TensorFlow which become incredibly complicated with PyTorch, like adding different regularization amounts to different layers. In TensorFlow there is a parameter to the layer that controls the regularization, in PyTorch you apparently need to loop through all of the parameters and know which ones to add what amount of regularization to.

I suppose one could easily get around these limitations with custom functions and such, and it shouldn't be surprising that TensorFlow seems more mature given that it has the weight of Google behind it, is considered the "industry standard", and has been around for longer. But I now see that TensorFlow has some advantages over PyTorch.

Labels: python , machine_learning , tensorflow , pytorch

1 comment

PyTorch

April 8, 2019, 2:31 p.m.

When I first started with neural networks I learned them with TensorFlow and it seemed like TensorFlow was pretty much the industry standard. I did however keep hearing about PyTorch which was supposedly better than TensorFlow in many ways, but I never really got around to learning it. Last week I had to do one of my assignments in PyTorch so I finally got around to it, and I am already impressed.

The biggest problem I always had with TensorFlow was that the graphs are static. The entire graph must be defined and compiled before it is run and it can't be altered at runtime. You feed data into the graph and it returns output. This results in the rather awkward tf.Session() which must be created before you can do anything, and which contains all of the parameters for the model.

PyTorch has dynamic graphs which are compiled at runtime. This means that you can change things as you go, including altering the graph while it is running, and you don't need to have all the dimensions of all of the data specified in advance like you do in TensorFlow. You can also do things like change the numbers of neurons in a layer dynamically and drop entire layers at runtime which you can't do with TensorFlow.

Debugging PyTorch is a lot easier since you can just make a change and test it - you don't need to recreate the graph and instantiate a session to test it out. You can just run an optimization step whenever you want. Coming from TensorFlow that is just a breath of fresh air.

TensorFlow still has many advantages, including the fact that it is still an industry standard, is easier to deploy and is better supported. But PyTorch is definitely a worth competitor, is far more flexible, and solves many of the problems with TensorFlow.

Labels: python , machine_learning , tensorflow , pytorch

No comments

Exercise Log

Nov. 27, 2018, 4:27 p.m.

I exercise quite a lot and I have not been able to find an app to keep track of it which satisfies all of my criteria. Most fitness trackers are geared towards cardio and I also do a lot of strength training. After spending a year trying to make due with combinations of various fitness trackers and other apps I decided to just write my own, which could do everything I wanted and could show all of the reports I wanted.

I did that and after using it for a few weeks put it online at workout-log.com. It's not fancy and it is quite likely very buggy at this point, but it is open to anyone who wants to use it. 

It's written with Django and jQuery and uses ChartJS for the charts. 

Labels: python , django , data_science , machine_learning

1 comment

I have previously written about Google CoLab which is a way to access Nvidia K80 GPUs for free, but only for 12 hours at a time. After a few months of using Google Cloud instances with GPUs I have run up a substantial bill and have reverted to using CoLab whenever possible. The main problem with CoLab is that the instance is terminated after 12 hours taking all files with it, so in order to use them you need to save your files somewhere.

Until recently I had been saving my files to Google Drive with this method, but while it is easy to save files to Drive it is much more difficult to read them back. As far as I can tell, in order to do this with the API you need to get the file id from Drive and even then it is not so straightforward to upload the files to CoLab. To deal with this I had been uploading files that needed to be accessed often to an AWS S3 bucket and then downloading them to CoLab with wget, which works fine, but there is a much simpler way to do the same thing by using Google Cloud Storage instead of S3.

First you need to authenticate CoLab to your Google account with:

from google.colab import auth

auth.authenticate_user()

Once this is done you need to set your project and bucket name and then update the gcloud config.
project_id = [project_name]
bucket_name = [bucket_name]
!gcloud config set project {project_id}

After this has been done files can simply and quickly be upload or downloaded from the bucket with the following simple commands:

# download
!gsutil cp gs://{bucket_name}/foo.bar ./foo.bar

# upload
!gsutil cp  ./foo.bar gs://{bucket_name}/foo.bar

I actually have been adding the line to upload the weights to GCS to my training code so it is automatically uploaded every couple epochs, which removes the need for me to manually back them up periodically throughout the day.

Labels: coding , python , machine_learning , google , google_cloud

1 comment

IOU Loss

Aug. 29, 2018, 11:52 a.m.

When doing binary image segmentation, segmenting images into foreground and background, cross entropy is far from ideal as a loss function. As these datasets tend to be highly unbalanced, with far more background pixels than foreground, the model will usually score best by predicting everything as background. I have confronted this issue during my work with mammography and my solution was to use a weighted sigmoid cross entropy loss function giving the foreground pixels higher weight than the background.

While this worked it was far from ideal, for one thing it introduced another hyperparameters - the weight - and altering the weight had a large impact on the model. Higher weights favored predicting pixels as positive, increasing recall and decreasing precision, and lowering the weight had the opposite effect. When training my models I usually began with a high weight to encourage the model to make positive predictions and gradually decayed the weight to encourage it to make negative predictions.

For these types of segmentation tasks Intersection over Union tends to be the most relevant metric as pixel level accuracy, precision and recall do not account for the overlap between predictions and ground truth. Especially for this task, where overlap can be the difference between life and death for the patient, accuracy is not as relevant as IOU. So why not use IOU as a loss function?

The reason was because IOU was not differentiable so can not be used for gradient descent. However Wang et al have written a paper - Optimizing Intersection-Over-Union in Deep Neural Networks for Image Segmentation - which provides an easy way to use IOU as a loss function. In addition, this site provides code to implement this loss function in TensorFlow.

The essence of this method is that rather than using the binary predictions to calculate IOU we use the sigmoid probability output by the logits to estimate it which allows IOU to provide gradients. At first I was skeptical of this method, mostly because I understood cross entropy better and it is more common, but after I hit a performance wall with my mammography models I decided to give it a try.

My models using cross-entropy loss had ceased to improve validation performance so I switched the loss function and trained them for a few more epochs. The validation metrics began to improve, so I decided to train a copy of the model from scratch with the IOU loss. This has been a resounding success. The IOU loss accounts for the imbalanced data, eliminating the need to weight the cross entropy. With the cross entropy loss the models usually began with recall of near 1 and precision of near 0 and then the precision would increase while the recall slowly decreased until it plateaued. With IOU loss they both start near 0 and gradually increase, which to me seems more natural. 

Training with an IOU loss has two concrete benefits for this task - it has allowed the model to detect more subtle abnormalities which models trained with cross entropy loss did not detect; and it has reduced the number of false positives significantly. As the false positives are on a pixel level this effectively means that the predictions are less noisy and the shapes are more accurate.

The biggest benefit is that we are directly optimizing for our target metric rather than attempting to use an imperfect substitute which we hope will approximate the target metric. Note that this method only works for binary segmentation at the moment. It also is a bit slower than using cross entropy, but if you are doing binary segmentation the performance boost is well worth it.

 

Labels: python , machine_learning , mammography , convnets

No comments

As I continue to work on my mammography project I save a lot of time by re-using weights from models I have already trained rather than training every iteration of every model from scratch, which would be very time consuming. However a drawback to this method is that if I add a new layer or change a layer when I continue training the model the layers which have not changed are prone to overfit as they have been trained for substantially longer than the new layers.

I tried only training certain variables, but when the checkpoint is saved only the trained variables are included in it, which means that the checkpoint can not be restored as it is missing many variables. This could be overcome by restoring certain variables from one checkpoint and others from a different checkpoint, but that is overly complicated and not very convenient.

Earlier today, I had added another deconvolution layer to my model. When I trained just that layer the accuracy of the model went very high very quickly, much more quickly than training all of the layers. But then I couldn't continue training all of the layers because the checkpoint only contained the layer trained. I don't have the time to retrain the entire monstrosity from scratch, so I found an ugly hack that allows me to train mostly the layers I want to train while saving all of the weights in the checkpoint.

I create two training ops - one for all variables (train_op_1) and one for the variables I want to train (train_op_2). I run train_op_2 most of the time. But right before I save the checkpoint I do one iteration of train_op_1 which updates all layers, so all variables are saved in the checkpoint. It's not pretty, but it works and best of all, the code doesn't have to be changed depending on what I want to train. I specify whether I want to train all vars or just the subset as a command line arg and if I want to train all vars, then set train_op_2 = train_op_1.

I just ran a few quick tests with no issues, hopefully this will continue to work.

Labels: python , data_science , machine_learning , tensorflow

No comments

Update on CBIS-DDSM Training Images

June 6, 2018, 3:07 p.m.

Even though I only have 1/5 of the images uploaded so far, I decided to do some tests to see if this method would work. It does, but it took quite a bit of tweaking to get performance to reasonable levels.

At first I just plugged the new dataset into the old graph, and this worked but was incredibly slow with the GPU sitting idle most of the time. I tried quite a few different methods to speed the pre-processing bottleneck up, but the solution was simpler than I had thought it would be.

The biggest factor was increasing number of threads in the tf.train.batch from the default of 1. This one change made a huge difference, cutting the training time down to about 1/4 of what it had been.

I also experimented with moving some pre-processing operations around, including resizing the images individually when loading them and after being batched. This had negligible effects, but resizing them individually was slightly faster than doing it as a batch. In general I found that the more pre-processing operations I moved to the queue (and the CPU) the better the performance.

This version still trains at about 1/2 the speed the tfrecords version did, which is a big difference, but the size of the training set has increased by orders of magnitude so I guess I can live with it. 

The code is available on my GitHub.

Labels: python , machine_learning , tensorflow , mammography

No comments

CBIS-DDSM Mammography Training Data

June 6, 2018, 1:32 p.m.

I am continuing to work with the CBIS-DDSM datasets and recently decided to take a new direction with the training data. Previously I had been locally segmenting the raw scans into images of varying sizes and writing those images to tfrecords to use as training data. I started by classifying the images by pathology with categorical labels, and while I got decent results using this approach, the models performed terribly on images from different datasets and on full-size images. I suspected the model was using features of the images that were not related to the actual ROIs to make its predictions, such as the amount of contrast or presence of extremely high pixel values.

To address this I started using the masks as labels and training the model to do segmentation of the images into normal and ROI. This had the added advantage of allowing me to exclude images from the DDSM dataset and only use CBIS-DDSM images which eliminated the features I believed the previous models had been relying on, as the DDSM and CBIS-DDSM datasets had substantially different variances, mins, maxes and means. The disadvantage of this approach was that the dataset was double the size due to the fact that the labels are now the same size as the images. 

I started with a dataset of 320x320 images, however models trained on this dataset often had trouble with images which had bright patches running of the edge of the image and images with high contrast, misclassifying the bright patches as positive. To attempt to address this I started training the model on 320x320 images, and then switched to another dataset of 640x640 images after training through 50 or so epochs. 

The dataset of 640x640 images only had 13,000 training examples in it, about 1/3 the number of examples in the 320x320 dataset, but was still larger due to the fact that each example and label is four times the size of the 320x320 images. I considered making another dataset with either more or larger images, but saw that this process could continue indefinitely as I had to keep creating new datasets of larger and larger size.

Instead I decided to create one new dataset which could be used indefinitely, for all purposes. To do this I loaded each image in the CBIS-DDSM dataset into Python. While the JPEGS are RGB, the images are grayscale so I only kept one channel of each image. I Some images have multiple masks, and rather than have multiple versions of each image with different masks, which could confuse the model, I combined all masks for each image into one mask, and then added that as the second channel of each image. In order to be able to save the array as an image I added a third channel of all 0s. Each new images was then saved as a PNG.

The resulting dataset is about 12GB, about four times the size of the largest tfrecords dataset, but the entirety of the CBIS-DDSM dataset (minus a few images which had masks of incorrect sizes and were discarded) is now represented. Now, in my model, I load each full image and then take a random crop of it and use that as training data. Since the mask is part of the image I can use TensorFlow's random crop function to crop the full image, and then separate the channels into the training example and it's label. 

This not only increases the size of the training data set exponentially, but since my model is fully convolutional, I can also easily change the crop size without having to create a new dataset. 

The major problem with this approach is that the mean of the labels is very low - around 0.015 - meaning that only 1% of the pixels have a positive label and the rest are negative. The previous dataset had a mean of 0.05. This will be addressed by raising the cross entropy weight from 20 to 75 so that the model doesn't just predict everything as negative. When creating the images I had trimmed as much background as possible from them to avoid having a large amount of training images of pure black, but still the random cropping produces a large number of images with little to no actual content. 

At the moment I am uploading the data to S3 which should take another couple days. Once this is done I will attempt to train on this new dataset and see if the empty images cause major problems.

Labels: coding , python , machine_learning , mammography

No comments

DDSM Mammography

May 23, 2018, 10:02 a.m.

For a course I was taking at EPFL I was working on classifying images from the DDSM dataset with ConvNets. I had some success, although not as much as I would have liked, and I posted an edited version of my report on Medium.

The source code used to create and train the models is available in this GitHub repo, and the code used to create the data and do EDA is available here.

Although the course is over I am still working on this project, attempting to fix some of the issues that came up during the first stage.

Labels: python , machine_learning , mammography , convnets

No comments

I was training a ConvNet and everything was working fine during training. But when I evaluated the model on the validation data I was getting NaN for the cross entropy. I thought it was the cross entropy attempting to take the log of 0 and added a small epsilon value of 1e-10 to the logits to address that. I thought that would fix the problem but it did not.

Further investigation indicated that the NaNs were being introduced somewhere early in the network, in one of the convolutional layers. I checked the validation and training data to make sure there wasn't some fundamental difference between the two, thinking that maybe one was being pre-processed differently than the other, but that was not the case.

In my graph I am using tf.metrics and gathering all of the update ops into one op to be executed during training with:

extra_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)

Also gathered into this op was the updates to the batch norms. I had done this many times before with no problems at all so never thought this could be a factor. But when I removed the extra update op from the evaluation code the problem went away. Including the ops generated to update my metrics individually caused no problems. 

I am not sure what the issue actually was, but I assume it has something to do with the batch normalization, or maybe there is another op created somewhere in my graph that caused this issue.

Update - I had been restoring the weights from a pre-trained model and I think the restored batch norms caused the problem. NOT restoring the batch norms when loading the weights seems to solve this problem completely. Otherwise the issue still occurred sporadically.

Labels: python , machine_learning , tensorflow

No comments

I have been working on a project to detect abnormalities in mammograms. I have been training it on Google Cloud instances with Nvidia Tesla K80 GPUs, which allow a model to be trained in days rather than weeks or months. However when I tried to do online data augmentation it became a huge bottleneck because it did the data augmentation on the CPU.

I had been using tf.image.random_flip_left_right and tf.image.random_flip_up_down but since those operations were run on the CPU the training slowed down to a crawl as the GPU sat idle waiting for the queue to be filled.

I found this post on Medium, Data Augmentation on GPU in Tensorflow, which uses tf.contrib.image instead of tf.image. tf.contrib.image is written to run on the GPU, so using this code allows the data augmentation to be performed on the GPU instead of the CPU and thus eliminates the bottleneck.

This has been a life saver for me. Adding it to my graph allows me to train for longer without overfitting and this get better results.

Labels: python , machine_learning , tensorflow

No comments

I am working on classifying mammography scans with a TensorFlow ConvNet. The scans are classified into five classes:

  • Normal
  • Benign Calcification
  • Malignant Calcification
  • Benign Mass
  • Malignant Mass

I was unsure of how I wanted to classify the scans so I created the model in such a way that it would work for any combination of classes. I initially started training with binary classification - normal or abnormal, with the goal of then expanding the number of classes once I had a model that made decent predictions on the binary case.

For the binary prediction I used precision, recall and a pr curve as metrics. When I expanded to multiple classes obviously those metrics no longer worked. As far as precision and recall I don't really care what type of abnormal the scan is - I just care that it is abnormal at all. And I wanted to have the same metrics to compare for all my models so I had to figure out a way to do precision and recall for all versions of the model.

The solution I came to was to "squash" my multi-class labels and predictions down into binary labels and predictions and feed those into the p/r metrics. I set up the classes so that 0 was always normal, so I can do the squashing as follows:

zero = tf.constant(0, dtype=tf.int64)
collapsed_predictions = tf.greater(predictions, zero)
collapsed_labels = tf.greater(y, zero)

Collapsed_predictions and collapsed_labels will then contain True if the prediction or label is NOT 0 and False if it is. Then I can feed these into my precision and recall metrics:

recall, rec_op = tf.metrics.recall(labels=collapsed_labels, predictions=collapsed_predictions)
precision, prec_op = tf.metrics.precision(labels=collapsed_labels, predictions=collapsed_predictions)

I also created a pr curve metric to see how the thresholds would affect the predictions. First I convert the logits to probabilities via a softmax and then feed that into a pr_curve_streaming_op as the predictions. In order to make this work with multi-class classification I squash the probabilities down to the probability that the item is NOT normal. Since my labels are created such that normal is always 0, the probability that it is not normal is just 1 - the probability that it is:

probabilities = tf.nn.softmax(logits, name="probabilities")
_, update_op = summary_lib.pr_curve_streaming_op(name='pr_curve',
                                                predictions=(1 - probabilities[:, 0]),
                                                labels=collapsed_labels,
                                                updates_collections=tf.GraphKeys.UPDATE_OPS,
                                                num_thresholds=20)

 

Labels: python , machine_learning , tensorflow

No comments

Google CoLab and Google Cloud

March 23, 2018, 6:30 p.m.

While it was amazing for running smaller models, apparently CoLab has it's limitations. I'm working on a ConvNet that takes 299x299 images as input and trying to train it on Google CoLab kept crashing the runtime with no error messages provided. The training data totalled about 2.3 GB, and I guess CoLab just couldn't handle it for whatever reason. 

I tried training on my laptop, but I estimated it would take about 6 hours per epoch, which is ridiculous, so then I tried to use Google Cloud's free trial to set up an instance with GPUs. Unfortunately the free trial no longer supports the ability to add GPUs, so that didn't work. I did set up an instance without GPUs which is training faster than my laptop right now, but not that much faster. My current estimate about about 2 hours per epoch.

My plan is to let this train overnight and see how it goes. If it is too slow I may try to use Google's TPUs, which are ostensibly optimized for TensorFlow. However they are very expensive at $6/hr. Amazon EC2 instances with GPUs are about the same price, which doesn't leave me many options. 

Labels: python , machine_learning , tensorflow , google , google_cloud

No comments

TensorFlow Queues and Validation

March 22, 2018, 1:36 p.m.

I am currently working with a dataset that is far too large to store in memory so I am using tfrecords and queues to feed the data in. This works great, except that I was not able to evaluate the model on the validation dataset every epoch like I usually do.

After spending quite a bit of time trying to figure out ways around this, none of which worked, I found an easy solution that does work.

batch, labels = read_and_decode_single_example([train_path])
X_def, y_def = tf.train.shuffle_batch([image, label], batch_size=8, capacity=2000, min_after_dequeue=1000)
X = tf.placeholder_with_default(X_def, shape=[None, 299, 299, 1])
y = tf.placeholder_with_default(y_def, shape=[None])

I have a function that reads that data in from the tfrecords file (read_and_decode_single_example()). I then create the default features and labels using shuffle batch. Finally I create X and y as placeholders with default, with the shuffled batches as the defaults.

Then when I am training I don't pass the feed dict, and it defaults to using the data from the tfrecords file. When it is time to evaluate, I pass the data in via a feed_dict and it uses that.

This is not a great solution, it is kind of ugly, and it does require loading the validation data into memory, but it works and is simple. I had also tried using tf.cond() to switch between reading the data from a train.tfrecords file and a test.tfrecords file but was unable to get that to work.

The research I did indicates that the preferred way to handle this is to use different sessions, or different graphs with weight sharing, but that just seems ridiculous to me. It shouldn't be that complicated.

Labels: python , data_science , machine_learning , tensorflow

1 comment

Google CoLab

Feb. 20, 2018, 6:43 p.m.

On my laptop it takes forever to train my TensorFlow models. I was looking for cheap online services where I could run the code and not having any luck finding anything, Google Cloud Computing does give you $300 worth of free processing time, but that's not really free. I did find Google Colab which is a Python notebook based environment where you can run code for free, and it includes GPU support!

It took me a little while to get everything set up, but it was relatively easy and it runs incredibly fast. The tricky part was getting my data into the notebook. While Colab saves the notebooks to your Google Drive, they do not run on your Google Drive so you can't just put the data on the Drive and then access it.

I used wget to download the data from a URL to wherever the notebook is running, then unzipped it with Python and then I was able to read the data, so it wasn't all that complicated. When I tried to follow the instructions on importing data from Google Drive via an API I was unable to get it to work - I kept getting errors about directories and files not existing despite the fact that they showed up when I did !ls.

They have Tesla K80 GPUs available and the code runs incredibly fast. I'm still training my first model, but it seems like it's going to finish in about 20 minutes whereas it would have taken 3+ hours to train it locally. This difference in speed makes it possible to do things like tune the learning rate and hyperparameters, which are not practical to do locally if it takes hours to train the model.

This is an amazing service from Google and I am already using it heavily, just hours after having discovered it.

Labels: coding , python , machine_learning , google

No comments

Update on TensorFlow GPU Windows Errors

Feb. 16, 2018, 9:07 a.m.

After playing with TensorFlow GPU on Windows for a few days I have more information on the errors. I am running TensorFlow 1.6, currently the latest version, with Python 3.6 and Nvidia CUDA 9.0 on an Nvidia GE Force GT 750M.

When the Python Windows process crashes with an error that says CUDA_ERROR_LAUNCH_FAILED, the problem can be solved by reducing the fraction of the GPU memory available with:

config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.7

If the Python script fails with an error about exhausted resources or being unable to allocate enough memory, then you need to use a smaller batch size. This problem does not crash the Python process, Python throws an Exception but does not crash.

Once I figured these out, I have had no problems running models on the GPU at all.

Labels: python , machine_learning , tensorflow

No comments

TensorFlow GPU Errors on Windows

Feb. 15, 2018, 1:50 p.m.

I have been loving TensorFlow lately and have installed tensorflow-gpu on my Windows 10 laptop. Given that the GPU on my laptop is not a really great one I have run into quite a few issues, most of which I have solved. My GPU is an Nvidia GeForce GT 750M with 2GB of RAM and I am running the latest release of tensorflow as of February 2018, with Python 3.6. 

If you are running into errors I would suggest you try these things in this order:

  1. Try reducing the batch size for training AND validation. I always use batches for training but would evaluate on the validation data all at once. By using batches for validation and averaging the results I am able to avoid most of the memory errors.
  2. If this doesn't work try to restrict the amount of GPU RAM available to tensorflow with config.gpu_options.per_process_gpu_memory_fraction = 0.7
    which restricts the amount  available to 70%. Note that I am unable to ever run the GPU with the memory fraction above 0.7
  3. If all else fails turn the GPU off and use the CPU: 
    config = tf.ConfigProto()
    config = tf.ConfigProto(device_count = {'GPU': 0})

The difference between using the CPU and the GPU is like night and day... With the CPU it takes all day to train through 20 epochs, with the GPU the same can be done in a few hours. I think the main roadblock with my GPU is the amount of RAM, which can easily be managed by controlling the batch size and the config settings above. Just remember to feed the config into the session.

Labels: python , data_science , machine_learning , tensor_flow

No comments

Python code to make sure two data frames have the same columns in the same order. I used this to make sure that two dataframes had the same dummy columns after using pd.get_dummies:

missing_cols = set( X1.columns ) - set( X2.columns )
for c in missing_cols:
    X2[c] = 0
X2 = X2[X1.columns]

Labels: coding , python , machine_learning

No comments

Django

Oct. 29, 2017, 4:51 p.m.

I have really been loving Django lately, and I wrote another version of this site in it. That site is skooch.com. The new site uses the same database as this one, so the only real difference is the language they are written in.

I find Python to be a much more opinionated and formal language than PHP, which makes it a steeper learning curve, but it forces you to think things through a bit more. I find the extra effort to be well worth it in the end as far as code quality goes. 

As a note the Python code was significantly shorter than the same code in PHP, for whatever that is worth.

 

Labels: coding , python , django

No comments

Python mysqlclient for Django on Windows

Sept. 6, 2017, 10:44 a.m.

I had been using SQLLite with Django for quite some time because I couldn't get mysqlclient for windows to install properly with pip. SQLLite was fine for local development, but before I deploy an app I wanted to get MySQL working.

It turns out it was very easy:

pip install mysqlclient==1.3.9

That's all I need to do! I had tried downloading wheels and all sorts of other stuff, none of which worked, but version 1.3.9 installs fine with no errors on Windows 10.

Labels: coding , python , django

No comments

Archives